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GEOMETRIC-OPTICS THEORY FOR COHERENT SCATTERING OF MICROWAVES
FROM THE OCEAN SURFACE

INTRODUCTION

In 1961 C. I. Beard (1) found that experimental values of the coherent reflected
field IEIE6 r1 are larger than the values given by the generally accepted theoretical formul%.

IE~iSA = exp[-2(27rg) 2 ]

for values of g = (oh sin 0)/N greater than 0.1 radian. Here E is the average electric
field due to the "sea surface" 8 A, E6 is the field due to the direct wave, r is the smooth
sea reflection coefficient, ah is the standard deviation of the sea-surface elevation, 4'is the
grazing angle, and X is the electromagnetic wavelength (Fig. 1).

R

IT

01

Fig. I -Ray reflection off of a random sea surface

The expression IE/E6PISA is the Gaussian theoretical curve (sometimes called the
"roughness factor") first published by W. S. Ament (2) in 1953. (Ament claims that
the result was derived by Pekeris and, independently, by MacFarlane in the 40's.) Since
then Ament's result has been obtained by numerous other workers. (See for example
Ref. 3.)

Manuscript submitted December 14, 1973.
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BROWN AND MILLER

The disagreement between theory and experiment has been unresolved for over a
decade; and it has been agreed generally that theoretical models based on geometric
optics could not yield a result more powerful than that of Ament.

In this report we show that the coherent reflected field is given by

= exp[-2(2irg) 2 ]10[2(2vg)2 ]

for 0 < g < 0.3, where 10 (x) is the modified Bessel function J0 Lx). We derive this
result using geometric optics, assuming a spherical wavefront incident on a Gaussian
collection S of sinusoidal surface waves. Further, IE/E6 PI agrees with Beard's experi-
mental curve (Fig. 2), with a systematic difference in g of 10%. Beard has estimated that
wave elevations were within 10% of their correct values.

We show how IE/E [ISA is obtained, assuming a plane wave front incident on a
(2,aussian collection SA of horizontal strips.

BASIC ASSUMPTIONS AND DEFINITIONS

Suppose that T is an isotropic emitter of electromagnetic waves with wavelength X
situated at a distance h2 above the mean sea surface and that R is an isotropic receiver
which is at a distance h1 above the mean sea surface. We take the mean sea height to be
equal to zero. Suppose that the horizontal distance between T and R is d, where d is
small enough that the earth's curvature need not be considered (Fig. 3). We assume

10
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Fig. 2-Comparison of theoretical and experimental results
for coherent forward scattering

that the sea surface can be described by some collection of functions S . To be more
specific, we assume that at any given moment the functions which we need to describe

2



NRL REPORT 7705

T

h2 h,
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d _ _

T'

Fig. 3-Geometry of ray reflection

the sea surface locally are in S . Let T' be the image of T with respect to the tangent
line through P, a typical reflection point on the sea surface. Let (X77 1 , M72 - h2 ) be the
coordinates of T', so that the coordinates of P are (Xni /2, X772/2). Note that when P is
on the s axis and we have specular reflection, % = % = 0, i.e., the image of T through
the s axis is at T.(0, -h2 ). When we have this situation, let 4 be the angle TP0. It is
easy to see that d tan ,4 = hI + h2 . We remark that we will be using two independent
coordinate systems, viz., the s, y system and the 71, 12 system with origin T. Note that
the coordinates of O in the s, y system are (0, h2 ) in the 771, r72 system.

In this work we use geometric optics, that is, we assume that only waves reflected
from a favorable slope will reach the receiver and that the local angle of incidence will
equal the local angle of reflection. Further, we assume that all reflections occur in the
s, y plane. We also will assume that the sea surface is "slightly rough," so that over a
long period of time the collection of points T', the image of T = ,T, will form a closed
connected set which has no holes, that is, a closed, simply connected region. It will also
be assumed that T; is an interior point of 4 T.

The following definitions will be helpful:

t= h2 - X

= 2/h2 -

t3 = d - Mil

3



BROWN AND MILLER

j2 - d2 + ( h  + h2 )2

= -2v cos

2= -2v sin

Note that r. is the specular distance RV.. The distance RTV in general is r q2 + )1I2.

We will show later that under suitable conditions T. is the center of symmetry of JT
and that if (X%, X772 ) EJ T, then

so that A T is bounded away from T and R. Let . be the smallest rectangle which con-
tains 4 T and whose sides are parallel to the coordinate axes. Then in view of the previous
inequalities,'R is a neighborhood of T', i.e., the dimensions of R are small compared to
d and h2. We then are justified in expanding r in a Taylor series about 1 = 0 and
dropping terms higher than those of first order in l1 and 2, giving

2rr
= + ^1171 + 72'72. (1)

If we define the row vector y = [f 1, y2] and let 7?= [1] we can write Eq. (1) as

21r
t= + 7 . (2)

CALCULATION OF THE ELECTRIC FIELD DUE TO A SINGLE REFLECTED RAY

The electric field E due to a single reflected ray is given by

E = E i rlexp exp 2 arg il, (3)( i) )VkxEfEr

where r is the complex reflection coefficient and E6 is the electric field due to the direct
wave which travels path length 6 given by

62 = d 2 + (h2 - hl)2 "

4
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We consider now the quantity 8Ir and state the following.

Observation: If 2h2 /d < 1 (< means less than or of the order on,

and

hi 1,
7

then

8r- 1.
r

Proof: Using Eq. (1),

S [d2 + (h2  N h )2 11 /2
r [d 2 + (h2 + h)2 Jl/2 A %fl1 cos'P - f sin[2 + (h2 _ h)2 1/2

+ (h2 + hl,)

1-~Co ______7_ 2 sin '[d 2 + (h2 + h1 )2]1/7 s -d 2 + (h2 + hl)2 1s2

Now

Sd2: + (h2 + hl)211/2 I 1

and

I'd2 < I '2 ?
[2+(h 2 + h1 ) 1/2 2 + h I h2 I 1

therefore

62 d2 + h2 + h2 - 2h h
-1 2 1 2

2 + h2 + +2/+ 2h

However, 2h2 /d - 1 and h,/d < 1 imply that 2hlh 2 /d2 < 1, so that h/r 1.

We then are Justified in writing Eq. (3) approximately as

SErIexp )exp [ ar) F (4)



BROWN AND MILLER

It is not hard to see that r = r(ol , 72 ). Since 4 T C A and .R is small, we will make the
simplifying assumption that r = f(O, o) = r(o) in 4 T. For the surfaces we consider later
the point (0, 0) will be the center of symmetry ofJ T, so that r = l(o) can be viewed as
some average in 4 T. Combining Eqs. (2) and (3) and defining

E0= ESIr(OI)Iexp 21r6 exp(-1 0 i)exp [-iargr(o)]

gives

E = E0 exp (-iy7). (5)

We remark that 2h2 /d < 1 and h,/d << 1 imply that (h, + h2 )/d < 1/2, i.e., tan ' < 1/2,
so that k < 270. Hence Eq. (5) is valid provided that

h k 2

and

~ < 270.

A RESULT DUE TO AMENT

Suppose A is the class of functions y = H, where the sea elevation H is distributed
normally with standard deviation oH and I2H I < min {h1 , h2 }. This is equivalent to the
class of functions Ament used in Ref. 2, which is the class H(s) where H "varies so slowly
with s that, in the neighborhood of each s, the surface is approximately a plane parallel
to the s axis."* It is easy to see that for the class I A,

*An equivalent way of defining the classS A is the following:

Let fl) I' be a disjoint collection of open intervals such that

where S is a set of measure zero and A is the real line. Define

I ifX E IK.(X) ,
0 if E IJ

Let i be a sequence of real numbers, and define a simple function

f(X) 2LsK0(X).
j=1

Let 'A be the class of all simple functions (see Fig. 4),

6
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T 1l, X2)11 =  n0, 2 11

so that in this case = JT a degenerate rectangle. Hence " = 2n2 -4WH (sin i)/X,
so that from Eq. (5) we have

E(H) = E. exp 4 1riH sin

f4wH sin.+ ( 4rH sin )= E0 cos\ + i sin- . (6)

The average electric field E due to the class A is given by

_HE(H) exp(dH

Hexp 1 H d11o

If we substitute Eq. (6) into this equation, it is easy to see that we get

H0  H 2 \n si t\

E exp - 2 dH

L-H ( 2 72H

To evaluate these integrals, we will let H0 - +oo. The error we make will not be large,
since the cosine function is bounded and the distribution tends to zero quickly when oH
is small. Performing the required integrations and noting that IE0 I = 1E6 r(o))i gives

Fig. 4-Typical simple function

7



BROWN AND MILLER

I j ep ~2(2wIoii s~ i 1 (7)

Ament derived this result for a plane incident wave and the class A" We have made the
assumption that the incident wave front is spherical. However, if we are considering a
plane wave, then r -_ l() in 1 T, and we have Ament's result.

CALCULAIION OF THE IMAGE DUE TO THE CLASS S

We assume now that the sea surface can be described by a Gaussian collection S of
sinusoidal waves y = H sin [(21r/p)(s + 9 )], where the sea-wave peak height H - 0 is
normally distributed, p is the sea-wave wavelength, and g is the sea-wave phase, which is
distributed uniformly.

Let j3= (2ir/p)(s + 9), and note (Fig. 5) that the coordinates of P are (s, H sin t).

The image .4 T is determined by the following three equations:

tj(d - s) = t3 (h - Hsin 3); (8)

27'Ht 2 cos = lA1 ; (9)

27H(Xr1 - 2s) cos - 2H sin (). (10)

2-3

Fig. 5--Individual sinusoidal wave showing amplitude and phase

Equation (8) is the condition that T, P, and R lie in a straight line; Eq. (9) is the con-
dition that the line through P' and P is perpendicular to the line through T' and T; and
Eq 1 0) is the condition that the slope of y = H sin 3 at P is equal to the slope of the
hne tfirough P' and P.

We now state thp following observation.

8
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Observation: If

4vrs._H ,411 2H 4 2h2 < ,hi + h2 < 1(1
21sH 22h2p '-2 '  , < d d

then A T is approximately an ellipse and

HT= {(Xfl, X77 2) 1171= cosn 2 = Co (2ini P- 2gh 2 cos cosJ ,

where P E [0, 27r]. (a means "the boundary of.")

We remark that the relations (11) Eae equivalent to the following:

27rH <-1 2h2 < 1, hI + h2 < 1, (12a)
p d d

=12(27H cos 2 cos 0 + - sin3 <C 1, E [0,27r. (12b)K - 221rco h2l' h2

The relations of (11) imply those of (12) since Js D s/h 2 > 1 (for example, when
H = 0, s/h 2 = d/(h I + h2 )> 1, so that certainly ,/ s/h2 > 1, and 2s/h 2 > 1; thus

fH\ H

Relations (12) imply (11), for when P3 = 7/2, we have 2H/h 2 <4 1.

When P = 0,

K 2 2 )r 4sH <
( A h211

Hence we must have

2(2v-i 24 s
2 2 r Ih 2p

or

M 2h 2 p

which implies that

H s

/4 h 2

9



BROWN AND MILLER

But

H
2w- ' 1,

and so

h2

a result which is not always true. Hence

47rsH-, 1.
h2A

Further, if we eliminate the parameter 1, we have

a T =X} k72 = }'
where

+ cot 2 i cotfl

Lcot 1

Proof: From Eqs. (9) and (10) respectively,

H X7
21r - cosl3 - l'i- 1 (13)A h2  (2_ N)

and

X-2 - 2 sin
2H CS h2  h2

ElmiatngX~ / 2 ro tes eqaton2gve h2  2

Eliminating M7,/h2 from these equations gives

X'2 2H/Xt~2 -~isin 1
1H 2  h2

2ir-cos3 2 -2

1) COS

10
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Solving for ,2 /h2 gives

2 2s2 2rL cos - (2If cos) + sin
S- H2

2 1+ (2 1r H cos )2

Hence

1 + (27*r cos P) 2  " 1,IjI h2

and it is clear then that

h2

Now we can write Eq. (13) as
H1

2ff- cosj = - _ 1~
P 2h2 1 n2

2h2

and since [X,72/2h 21 < 1, we have approximately

7 - 41rh2H Cos (14)

From Eq. (8) and (10) respectively,
_- 2srnll + 1

-

X2 = H sin + 2 - cos( s (15)2 S) I

and

d -X77 (Hsing - h) + d. (16)S=hi + h2 - )'?2

Eliminating X771 from Eqs. (14) and (15) gives

= Hsing + 21r"H cos h2  (29H cos s (17)
22

Equation (16) can be written as

11



BROWN AND MILLER

(H sin3- h1) ( 1 ) + d. (18)

hh + hd

Clearly

and since from Eq. (14)
Kitq = 2_'H 2h2 cosRI 1

12 v '2CO
d~ 7

we can write Eq. (18) approximately as

d
8s + h2 (Hsin - h,) + d

= cot 0 (h2 + Hsinj). (19)

From Eqs. (17) and (19), we have

-7 = HsinP + os COS h 2  - "CO h2 co t

2 A )

- (2v cosi) Hcot sin3. (20)

Since

(2v- cos3 Hcot isin
SH sin

H h2
27 cos) h2 cot 2

and

12
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(2w .!H c o P3) 2h 
+ h o

(21! Co P) h2 cot 121H'csl

we can write Eq. (20) approximately as

Hsin -(2.rH cos3 h2 coto
22

and so

2 ( sin 2 _ cot C os . (21)

We easily can verify that

and check that it is indeed an ellipse. The family of ellipses is shown in Fig. 6. If we
let j ir/2, 3r/2, we obtain the interestingresult that 4 T (Class ) {y axis T
(Class SA), so thct the major axis of the ellipse (2H/X) 2 = f'Ai must be greater than 4H/X.

AVERAGE ELECTRIC FIELD DUE TO THE CLASS S

For a given H and P, the electric field due to a single reflected ray is given by Eq.
(5):1 E = E0 exp (-i7). We easily find that

4irHy? = - sin 0 sinj3,

so that

EIH,13) = EO exp - --- sin sin) . (22)

When r = /2, 31/2, we get Eq. (6). The physical interpretation of 'M is shown in
Fig. 7.

13
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R

Fig. 6-Family of image ellipses

TR

Fig, 7-Path length from an arbitrary point on an image
ellipse to the receiver, which determines phase

14
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We now define

E(() -= fdF (23)

0

Equation (23) gives the average elective field due to all reflections such that T' is in
aJT.

We recall that

2w

and

s = cot (h2 + Hsin1),

so that

IL
h2 cot' + Hcot isin + i"2w

Taking differentials in this last equation gives

Ad3 Hcot 0 cos0do + dF ,
2F

so that

di ('- H cot 0 cos ) d.

Hence

f 13) ((- H cot i cos ) d0

(H ) 0-21 r co tiCos )d P

2 J (H- )r - H cot 0-27
=E(H. ) d0 E(H. 3) cos 0 d

15



BROWN AND MILLER

But E(H, 0) is a function of sin 0, so that

S3'2f P3-21r
E(H, 0) cosI]dt = f E(H, 1) d sin3 = 0.

Hence

(H) - E(H, P) dP,

and on performing the required integration, we obtain

(H) = EoJo(j-- - sin ) (24)

where J0 is the Bessel function of order 0. Note that j does not appear in Eq. (24).

Now let E be the average electric field due to the Gaussian collection of all sinusoidal

waves, i.e.,

-~ao ( ' dH

= O (Hep-- - (25)
HH0  

*

exp - dH

where 21i0 - min {h1, h2 I and uH is the standard deviation in the peak height H.
Substituting Eq. (24) into Eq. (25) gives

FHH° Jo(4r- sin exp(- 1 dH
E=E 0

H-HO exp-1-H2dH

I k 2

As before, we let H0 - +o without making a large error, and on performing the required
integrations (and noting that IE0 I = IEh r ), we obtain

[(p 2ffoH sin 0)2] 1 0 (27roH sin

where !0 (x) is the modified Bessel function J0 (ix).

16
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If oh is the standard deviation of the sea elevation, then, since we have considered
sinusoidal waves, it is clear that oH - Voh (Fig. 8). Hence we can write

t j x 2  21rh Sin 4i)2 ]2 c4sn 2

Fig. 8--Relationship between standard deviation in
peak height, oH, and standard deviation in elevation,
oh , for a sinusoidal wave

We remark that the use of sinusoidal surface waves is a mechanism for obtaining a rich
source of wave-height wave-slope pairs. Further, it seems that we obtain enough of these
pairs distributed in the right way to describe the sea surface over a long period of time.

To sum up we provide the following tabulation:

Table 1

Coherent Field for Various Sea-Surface/Incident-Wave Combinations

Sea Surface Incident Wave Result

Simple functions Plane Ament: IAEE 5  A

Simple functions Spherical Ament: IEIE 6 [' A

Sinusoidal waves Plane Ament-like: IE/E6 r i

Sinusoidal waves Spherical IE/Es r I

The Ament-like result is obtained by substituting a = Vloh in

= ex ~-2( 27raH sin 1k2 ]
giving

Sexp [~4 ( 2l sin 1)2]

17



BROWN AND MILLER

This is justified since when the incident wave is plane, the only reflections that can occur
are off the peaks and troughs (assuming no shadowing) of the waves (Fig. 9).

Fig. 9-Reflection points for a plan incident wave

A RESULT DUE TO BECKMANN

Since the completion of this work, it has been realized that another, but different,
theoretical treatment based on geometric optics had been done previously by Beckmann
(4)*. Beckmann's report was undertaken to try to calculate theoretically the effect of
spherical-wavefront illumination for comparison with Beard's experimental results of the
statistics of the incoherent field scattered from a random water surface (5). In the
process of calculating the incoherent field, Beckmann also derived expressions for the
coherent field. It seems that these were not pursued at the time since the interest was
in the statistics of the incoherent field. Beckmann obtained

T = exp(-K) 1 +-IF,,(I;3;K)] 1/2
ErB I V22

K = (10 ahsin ) 2

where IF, (1/2; 3/2; K) is a confluent hypergeometric function. We have extracted this
result from Ref. 4, Eqs. (49), (50), (51), and (85). Numerical computations indicate that

E E P < for 0.1 < g < 0.3.
A
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